Search results for "Energy system"
showing 10 items of 46 documents
Towards the definition of a sustainable Smart Model for the suburbs redevelopment
2020
Starting from the analysis of the problems that characterize the Italian suburbs, the application of a Smart Methodology to a real peripheral area is presented. In literature, several studies underline the urgent request of the city's periphery, enhancing local and national projects to increase the quality of life in the suburbs. In this framework, authors propose a multifunctional centre development, characterized by modern technologies (both structural and plant) to implement energy efficiency and social aggregation, in line with the citizen's needs. Once the simulation model of alternative solutions, such as construction type, energy system and social services, was elaborated in Matlab/S…
An integrated approach based on Life Cycle Assessment and Thermoeconomics: Application to a water-cooled chiller for an air conditioning plant
2018
Abstract A large number of methods for energy systems analysis were developed in the last decades, aimed at acquiring an in-depth understanding of plant performances and enabling analysts to identify optimal design and operating conditions. In this work an integrated approach based on Life Cycle Assessment and Thermoeconomics is proposed as a method for assessing the exergo-environmental profile of energy systems. The procedure combines the capabilities of these two techniques, to account simultaneously for aspects related to thermodynamics of energy conversion processes and to the overall impacts along the plant life cycle related to other phases, i.e. from raw material extraction to the d…
Simulation of photovoltaic installation connected to the grid with storage system
2017
Abstract In the present paper, a new approach for the management of energy resources in a research laboratory is proposed and evaluated. A simulation study for the photovoltaic (PV) installation was conducted under the Tunisian-Italian cooperation project DE.DU.ENER.T, using renewable energy and economic criteria. The aim of the study is to improve the energy efficiency in order to minimize the electricity cost consumed in the laboratory. A Hybrid Renewable Energy System consisting of a photovoltaic field of 12KWc was installed to reduce the exorbitant bills, due to intensive energy equipment such as drying ovens and workstations, using sustainable, green and clean sources. In addition, a s…
Modeling and design of Net ZEBs as integrated energy systems
2015
Net-zero energy buildings (Net ZEBs) are emerging as a quantifiable design concept and a promising solution to minimizing the environmental impact of buildings. This is the main concept that is focused on this chapter with emphasis on dynamic modeling and examples of technological approaches to achieve net-zero energy. Appropriate modeling of building-integrated solar energy systems is essential for the design of Net ZEBs and the study of optimal control strategies. The net-zero energy balance may be achieved through a combination of passive and active solar technologies, heat pumps, combined heat and power, and energy efficiency measures to reduce energy consumption for lighting and applia…
How do policies for efficient energy use in the household sector induce energy-efficiency innovation? : An evaluation of European countries
2017
Abstract Research on innovation induced by climate-mitigation policy has been focused predominantly on the supply side of the energy system. Despite considerable climate-mitigation potential on the demand side, less attention is given to the innovation effect of policies addressing the household sector. Based on a comprehensive data set, including 550 policy measures over 30 years (1980–2009) and covering 21 European countries, we find—based on econometric estimations—that policies targeting efficient energy use in the household sector significantly increase the number of patented energy-efficiency inventions. A comparison of the different policy types reveals a particularly strong influenc…
Results of a literature review on methods for estimating buildings energy demand at district level
2019
Abstract In the framework of distributed energy planning, evaluating reliable energy profiles of different sectors has a prominent role. At the same time, it is a quite challenging task, since the availability of actual energy profiles of buildings at the district level is not widespread. A survey of over 70 studies in scientific literature has been accomplished and a set of criteria has been defined for classifying the selected contributions based on the energy demand data features, source and/or estimation methods, highlighting the ones adopting hourly energy profiles. As final results, tables summarizing the main methods characteristics and a selection of studies providing directly useab…
Energy and environmental benefits in public buildings as a result of retrofit actions
2011
Abstract The paper presents the results of an energy and environmental assessment of a set of retrofit actions implemented in the framework of the EU Project “BRITA in PuBs” (Bringing Retrofit Innovation to Application in Public Buildings – no: TREN/04/FP6EN/S07.31038/503135). Outcomes arise from a life cycle approach focused on the following issues: (i) construction materials and components used during retrofits; (ii) main components of conventional and renewable energy systems; (iii) impacts related to the building construction, for the different elements and the whole building. The results are presented according to the data format of the Environmental Product Declaration. Synthetic indi…
A Banki–Michell turbine for in-line water supply systems
2017
The design of a novel Banki-Michell type turbine, to be located in existing water pipelines, is proposed. The turbine has a very efficient diffuser which allows the turbine to be compact and, most important, to have in-line flanges for minimal piping modifications at existing sites. This turbine combines a simple geometry with stable efficiency in a wide range of water discharges. The design procedure estimates the outer diameter of the impeller, its width and the geometry of the diffuser. A series of experimental tests has been carried out to measure the efficiency of the proposed turbine prototype. The turbine was tested in two different configurations, with and without rotational velocit…
Addressing the main challenges of energy security in the twenty-first century – Contributions of the conferences on Sustainable Development of Energy…
2016
Abstract Climate change and fossil fuel reserve depletion both pose challenges for energy security and for wellbeing in general. The top ten among them include: Decarbonising the world economy; Enhancing the energy efficiency and energy savings in buildings; Advancing the energy technologies; Moving towards energy systems based on variable renewables; Electrifying the transport and some industrial processes; Liberalizing and extending the energy markets; Integrating energy sectors to Smart Energy Systems; Making the cities and communities smart; Diversifying the energy sources; and Building more biorefineries. Presenting the contributions of selected conference papers published in the speci…
Achieving maximum power transfer in a multi-source renewable system
2014
In this paper, a multi-source DC-DC power system is proposed for renewable applications. A multi-input, single inductor power converter controlled by two interacting control loops is designed. The steady-state and small-signal analysis of the designed system is carried out. A battery-photovoltaic system is designed as an application example. Both the output voltage and maximum power point of solar panels are properly controlled to achieve high performances of the whole system. Experimental results on a 48 V laboratory prototype are presented to discuss system performances.